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Abstract: In this paper, we investigate a generalized Gilpin-Ayala competition system which is more general and
more realistic than the classical Lotka-Volterra competition system. By the fixed-point theorem and differential
mean value, some sufficient conditions guaranteeing the existence, uniqueness and exponential stability of positive
periodic solutions for a generalized Gilpin-Ayala competition system with time delays are given. Two illustrative
examples are also given in the end to show the effectiveness of our results.

Key—Words:exponential stability;Gilpin-Ayala competition system; periodic solution; fixed-point theorem

1 Introduction For example, [10] considered the n-species Lotka-

. . . . \olterra systems
The role of spatial heterogeneity and dispersal in the y

dynamics of populations has been an important re-
search subject. There are many works about it in the dai(t) _ LN

literature[1-3]. While many models are mainly based a =zl ng aij; (1)) (A1)
on Lotka-Volterra systems. Since that time, many dif-
ferent forms of the Lotka-Volterra competition model
have been studied (see, for example, [4], [5]). How-
ever, the Lotka-Volterra competition model is linear
(i.e. the rate of change in the size of each species is a

linear function of sizes of the interacting species) and

[11] investigate the Positive almost periodic solutions
of Lotka-Volterra recurrent neural networks by the
following delayed differential equations:

this property is considered as a disadvantage of this 4, ;) n
model. In 1973, Gilpin and Ayala [6] claimed thata i~ — %i(t)lri(t) = 2 aij(t)z;(?)
little more complicated model was needed in order to n = (A2)
obtain more realistic solutions, so they proposed a few - ,21 bija(t — 7ij(t))]-
competition models, for example, =

df\gt(t) = N;(£)[1 — (%)Bi _ aij%], Moreover, several important results for periodic so-

‘ ‘ lutions of Gilpin-Ayala competition model have been

i, =1,2,---,d. whered; are the parameters which ~ obtained in Refs. [7,12-15]. For example, The authors

modify the classical Lotka-Volterra model and they N [12,14] have investigated existence and attractivity
represent a nonlinear measure of interspecific interfer- Of periodic solution for Gilpin-Ayala competition sys-

ence(i = 1,2,...,d). It was noticed that the Gilpin-  t€ém.
Ayala model has even some properties which do not However, to our knowledge, few papers have been
exist in the Lotka-Volterra model [7]. published on the exponential stability of positive peri-

In recent years, many researchers have studied the odic solutions for a generalized Gilpin-Ayala competi-
global stability and other dynamical behaviors of the tive system. In this paper, we will investigate the glob-
Gilpin-Ayala competition model, see [5,6,8,9]. ally exponential stability of positive periodic solutions

At the same time, many different forms of the for the following generalized Gilpin-Ayala competi-
Lotka-Volterra competition model have been studied. tive system with time delays
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“ = mOlri(t) — ai(t)af (1)
= 2 ai(t)z(t) = X2 bii(t)z;(t — )],
J=Llj#i J=1
(1)
fori = 1,2,---,n, wherez;(t),r; and a;; are the

population size at a timé the intrinsic exponential
growth rate and the carrying capacity in the absence
of competition, respectively, for the— th species;
#; > 0 are the parameters that modify the classical
Lotka-Volterra model;a;;(i # j = 1,2---,n) and
bij(i,7 = 1,2---,n) represent the effect of interspe-
cific interaction, respectivelyy;; is time delay of at
the timet.

The initial conditions of system (1) are given by

xi(s) = ¢i(s), s € [—,0], 2
where: = 1,2,....n, 7 = 1o 1<J<m{7”}
¢i(s) > 0 are bounded and continuous p#r, 0].

2 Preliminaries

In order to establish the existence, uniqueness and
exponential stability of positive periodic solution for
system (1), we give assumptions.

o (H):Foreach,j =1,2,...,n,7(t), a;t),
b;j(t) are w— periodic continuously functions

and satisfy
0 <1 <ri(t) <7,
0<g;<a (t)§2
0 < by < b(t) < b

Definition 1 Letz*(t) = (x
be anw— periodic solution

value
Y= (¢1(t)7 ¢2(t)> e 77;Z)n(t))T'

If there exist constanta > 0 and M > 0, for every

Ef x5 (t), ()T

1
of system (1) with initial

solutionz(t) = (x1(t),x2(t),---,z,(t))T of system
(1) with initial value

o = (P1(),p2(8), -+, ()7,
such that

()] < Me™|l4 = gl|, ¢ >0,

Z\x

thenw— periodic solutionz*(¢) is said to be exponen-
tially stable, where

HT/J—CPH Sup ZW: z
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Let .
&= =~
’ ai;’
n n
A = r, — Z al]dj - Z bijdj7
J=1j#i Jj=1
0, Al
Qg
dzfgﬂxn{dl}> i:1727"'7n
r=ggtnh o= gtk
qgi =€ fo ri(u) du’ q= 1I<na<X {QZ}
e~ f:n(u)du
Ri(t,s) = = , e t,t+ wl.
()=~ sty

Lemma 2 Under hypothese$H), if for any given
initial value ¢;(0) > 0, then there is a unique positive
solutionz(¢) of system (1) with satisfy initial value ,
fort > 0.

Proof. From (1), we can obtain

2i(t) = i (0) exp{ fy[ri(s) — au(s)ai* (s)
- Eni aij(t)z;(s) — Eni bij(s)z;(s — 7i5)]ds},
J=Llj#i J=1
wherei =1,2,---,n

With the initial valueyp; (0) > 0, we know

zi(t) = i(0) exp{ [y [ri(s) — aii(s)a} (s)
— Y ayt)as(s) — 32 big(s)ay (s — 7ip)lds)
J=1,j#i Jj=1

wherei = 1,2,---,n. Obviously, this solution is a
unique positive solution of system (1).

Lemma 3 Under hypothese$H), if 4, > 0,0 <

e < ¢i(0) <d;,i=1,2,---,n,letxz(t) be an posi-
tive solution of system (1) with satisfy initial value (2),
thenz(t) is bounded, and

€ngz(t)§dz, i:1727'”7n

Proof. From (1), ifz(t) is an positive solution, we
have
dxl(t) 0;
7 S xi () [ri(t) — au(t)z; ()],
or
x;(gi“)(t)d%it) —ri(t)x; " () + ag(t) < 0. (3)
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Let z;(t) = ;% (). We have

dz;(t
Zdi ) + 01 (t)2i(t) — Oiai(t) = 0,
or ;
Z;it) + 0;7i2;(t) > Oia;;. (%)
From (4), we have
d _
T (1) 2 PN,
thus we can obtain
a(t) 2 [24(0) - L)t 4 S ()

If v;i(0) < d;, from (5) we have

_ 1 _
9, (3
;' () < ! o
i 2% (0) Lojebmt 4 %0 g

ie.,

_—

':Ul(t) é (2)91 = dl7 1 = 1727 7n
a

On the other hand, whery(¢) < d;, from (1)

dml(t) _ 0; " _ LA
o 2 m()ri—au (- 3 az’jdj—j;bz’jdj],

J=L1j#i
or
z; O )dwét( ) _ A% () + @i > 0. (6)
Let z;(t) = «; % (t). We have
dz;it) + 0, 4;2(1) — By < 0. (7)

If e; < ¢;(0), from (7) we can obtain

i —Mt+%<“i. )

2(t) < [:(0) — 7l A;

From (8), we have

i.e.,
We obtain

ei < zi(t) <d,
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3 Main results

In this section, we will derive some sufficient condi-
tions which ensure the existence, uniqueness and the
exponential stability of positive periodic solution for
system (1).

Let

za(1))"

=z(t),t € R}

X ={z=(2(),

wa(t), - € C(R,R") :

z(t + w)
with the norm defined by

i = max {zi (1}

lall = max {Jzi]}.
Define the cond’ in X by

P = {x = (z1(t),za(t),---, 2, (t))T € X :

(1_@’7)%,,5

0 <ai(t) < (— e0,w],i=1,2---n}

Theorem 4 Under the hypothesdd7), and all of the
conditions in Lemma 2 are satisfied, if

. . jzlvj#f )
+(E5EE) Y Jay + 3 (U5 o+ (U807}
‘]:
<1,
fori = 1,2,---,n, then system (1) has one positive

w— periodic solution.
Proof. Letthe mapy) be defined by

(Ya)(t) = ()1, ()2, -, (P)a)T,
te R fori =1,2,--- n,

wherex € P,

(a)it) = J;™ Rilt, 8)%(8)[%(8)96?2'(8)

+ X ‘aij( Jzi(s) + Z bij(s)xj(s — 7ij)]ds.
J=1j#i
9)
Since
Ri(t T w,s+ w) = Ri(t> 8)7
q; 1
< R; <

Issue 3, Volume 12, March 2013



WSEAS TRANSACTIONS on MATHEMATICS

wherei = 1,2,---,n.Foranyz € P, itis easy to see
thatyx € C(R, R™). From (9), we obtain

= [H2 Ryt + w, 8)ai(s)]as (s)2? (s)

' aj(s)x ()+szg() i(s
J=1,j#i
=/, i(t+ w, Z—l—w)xz(z"‘w)[au('z

(Yx);(t +w)

n

— T,-j)]ds

>

n
tw)r; (z+w)+ > aii(s)zj(z+w)
J=LjAi

~

Hence we obtainyz € P.
Next we will prove is contraction mapping. For
anyx,y € P, we have

(x)i(t) — (Yy)i(t)
= tt+w i(t, s){aii(s )(xé) +1( ) — yf +1( )

+ % ay(s)m(s)zi(s) — wils)y;(s)]
J=Llj#i

J
bij(s)[wi(s)zj(s — 7ij) — yi(s)ys(s — 7ij)] Yds

I
-

M:

+
1

J
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= [ Ri(t, ){(0: + Das(s) (€] (ws(s) — wi(s))

+ i ai()[wi(s)(25(s) — yj(9)) + y3(s) (xils)

J=Llj#i
—yi(s))] + Z bij(s)[wi(s)(x;(s — 735) — y;(s — 73;))
+y;(s — Tw)( i(8) — vi(s))]] }ds,
(10)
whereg; lies betweenc;(t) andy;(t).
From (10), we can obtain
() — (Yy)|| = max max ()i (t) — (y)i(t)]

1<i<n te[(]

< 1 t+w vi i
Joax Eé"fi] =g i (0 +1)au( )€ i (s)

—yi(s)] + z,mxﬁmwmw@—w@ﬂ
j=1,j#i
+yj(s)|zi(s) — vi(s)[] + Zl bij(s)[xi(s)|z;(s — 7ij)
J:
—yi(s — 7ij)| +y;(s — 7ig)|zi(s) — vi(s)|] }ds
( )f .
< 2 gy e o (O D )
)ik
—yi(s)] + z#amdiﬁ>em<> yi(s)]
= ] 1
. L n o _ —o)
+(EE) Y i) = (o)) + 3 bisl(H5E)T
‘]:
1
(s — 1) — y(s — 7ip)| + (B2 % |ai(s) — ya(s)[]}ds
(1—g)7
SI?%L quo {(0; + Day—
b3 RN (0T,
j=1,j#i )
+ 3 (S o (U207 by Hle — ylds
]:
w — (I=g)F
< nax % (0 + 1)ag
b3 (U 4 (U5 e,
J=1,5#i )
n _ 1 T
+ LI+ (U)o — v
]:
< —y]

Thus, v is contraction mapping, by fixed-point
theorem, it follows that there exist uniqueness an fixed
point z*(t) satisfying

P(a®)(t) = ™ ().

Now we will show thatz*(¢) is the positivew—
periodic solution of (1). From (9), we obtain

d(wzzi(t)
= ri(O)(Wa)i(t) + Rilt,t + w)zilt +w)

[aii(t + W)zl (t+w)+ 2 a(t +w)zi(t +w)
j=Lj#i
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+ f:lbj(t+W)l’L'j(t +w — Tij)]
j=

Rt ei(Blau()el () + > ay(t)a;(t)

+ 30 b (85t — 7i7)]
7j=1

=ri(t)(Y2)i(t) + (1211- - I—Lqi)iﬂi(t)[aii(t)w?i(t)

+j:1§;_# aij(t)z;(t) + ]Ziil bij(t)x;(t — 7i5)]
— (O @a)i(t) — aiOlaa B2l () + S ay(®)a;(t)
J=Llj#i

i (t +w) =z (1)

From the above, we can see that system (1) has one

positivew— periodic solution.

Theorem 5 Under the hypothesdd7), and all of the
conditions in Theorem 4 are satisfied@jf> 1 and

A- 0;—1
—(1“ Z %+ Z a32+zbﬂ<0
a“ j=1j7#
i =1,2,---,n.Then system (1) has a unique positive

w— periodic solution which is globally exponentially
stable.

Proof. By using Theorem 4, system (1) has a
unique positivew— periodic solution. In the fol-
lowing we will prove the unique positives— peri-
odic solution is globally exponentially stable. Let
z(t) = (Z1(t), T2 (t), - -+, Tn(t))T be an positives—
periodic solution of system (1) with initial value

zi(s) = @i(s), e < @i(0) <dj,

Letz(t) = (21(t), z2(t),---,z,(t))T be an any
solution of system (1) with initial value

zi(s) = ¢i(s), e < i(0) < d;,

From Lemma 3, we have

-7 <s5<0,

—T7<s5<0.

zi(t) > 0,3;(t) > 0,i =1,2,--,n
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Let
vi(t) vi(t)

From (1), we can obtain

= Inz;(t), =Inz;(t),i =1,2,...,n.

WD) = 7,(#) — @i (t)ehv )
n n (11)
= % ag(en® = 3 by(pent=).
J=1j#i Jj=1
WD) — 1y (t) — agg(£)ehH O
n ) n (12)
- ¥ aij (t)ey](t) -3 b](t)ey](t Tij)
J=15#i j=1
From (11) and (12), we have
d(yi (1) —7:(t))
dt
= —ay;(t) (%) — 0iBi(t)) zn: a;j(t)(e¥ ®)
. J=Lj#i
—e¥i(t)) — Zl by (t)(e¥s(t=7ia) — B3 (=),
]:
(13)
If 8; > 1, we can obtain
sgn(yi(t) — 7; (1)) (P — fimi(®)
(14)
> e(gi_l)gi(t)|eyi(t) — ebilt) |.
fori=1,2,---,n,t>0.
We consider the Lyapunov functional:
V(t) = X[ |yi(t) — 5i(t)|
=1 (15)

+ i l_)lj ftt - e£(8+7’ij)|eyj(5) _ e@j(s)|ds]

—Tij

wheree > 0 is a small number.

Calculating the upper right Dini-derivative
DTV (t) of V(t) along the solution of (13), using
(14) we have

i {ee! yi(t) — Galt)] + eLsgn(y(t)

-<>>M+Zb[

—ui(t
_e€t|ey](t TZJ) _ ey](t TZJ)”}

DTV (t) =
t+TLJ) |ey] (t) egj (t)|
—i(t)| + sgn(yi(t) — vi(t))

69igi(t)) _ i

< e % {elyi(t)
[—aq(t) (e Vi ® — aij(t)(ev )

_em®) -3 bt

Jj=1
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+ En: bijlecTii|e¥i(t) — eBi(D)| — |evs (t=Tis) — 83 (t=Tis) ||}

> by
J=L1j# .
|evi (t=Tig) — ¥ (t=7ij)|] 4- '21 bijlesTi |eyj(t
]:
—e¥i )| — |evs(t=7ij) — i (t=7i5)|]}

aijlevi® — eBi®)| 4

.
m:

—7i(t)| — Qiie(ei_l)ﬂi(t)

< et é{ewi(t)

Jer® B0 4 gy eni® — eFi)]
j=Li#i
4 z bi;jeTii |eYi &) — 7 (0)]}
‘]_

t e A; o w =
<ef Z{a_gu(a_i;) i+ X aji
i=1 j=1,ji

n
et Zl bji}lai(t) — Zi(t)]

]; A 0;,—1 n
<et Y AS —au(E) 4+ X ap
i=1 J=1,5

n
e bji}lai(t) — Zi(t)]
‘]:

(16)
whereg; lies betweenc;(¢) andz;(t).
From condition of Theorem 5, we can choose a
smalle > 0 such that

< AZ 02‘07 ET
i+ Z aj; +e Zb],<0

J=1,j#i

) CL”

fori=1,2,---,n.
From (16), we getD*V(t) < 0, thenV (¢) <

V(0), forall ¢ > 0.
From (15), we have

n

V(t) > 3 eyi(t) — 7i(t)]
W (17)
2 %\ zi(t) — z4(t)]-
V(0) = ,_Zlﬂyz(o) i(0)]
30 by [0, el |evi(s) — i (5)|dg]
=1 N
= ;[5_12|902(0) 901(0)|
+ 2 bij J2,, e |pi(s) — @5(s)|ds]
j:
< 1r£fa<xn{eZ + Z bﬂ f_ e(s+T) ds}|le — &l
(18)
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SinceV(0) > V(t), from (17) and (18), we obtain

2et Y fmy(t) — zi(t)] < et Y %|5Ei(t) —z;(t)|
i=1 i=1""
1 n 7.0 _e(s+7)
< i+ 35 10, s o~ 7
(19)

By multiplying both sides of (19) witlle=¢! , we
get

Z@z

)| < Me™ 6t||<,0 @ll, t>0.(20)

_332

whereM = d max{ + Z bji [0 est7)ds).

By Definition 1, system (1) has one positixe-
periodic solution which globally exponentially stable.

Theorem 6 Under the hypothesdd7), and all of the
conditions in Theorem 4 are satisfiedik< 6; < 1,
and

A, 81
—0;a;;( ,—Z %+ Z aﬂ-i-Zbﬂ <0,
i J=1j#i
fori = 1,2,---,n, then system (1) has one pos-

itive w— periodic solution which globally exponen-
tially stable.

If 0 < 6; < 1, using Taylor expansion, we have

0; —0;

i i ‘_(92'—1)

Gt}

(i — 25) + ol|z — z]?),

whereo(||z — z||?) is second-order infinitely small of
||z — z||. Similar to the proof of Theorem 5, we can
obtain result of Theorem 6, proof is omitted.

Remark 7 For system (1), whef;, = 1,b;; = 0, we
obtain the Lotka-Volterra systefail); whenf; = 1,
we obtain the Lotka-Volterra recurrent neural net-
works (A2).

From Theorem 4 and Theorem 5, we may obtain
the following Corollary 8, Corollary 9.

Corollary 8 Under the hypothesdg?), and all of the
conditions in Lemma 2 are satisfied, if

n
—a;+ Y. 45 <0,i=1,2--n
j=1j#i
2w (1—q)F _ N .
T o 2 {ai+ Z a;}<1,i=1,2---,n
T a =1,
then systenjA1) has a unique positive/— periodic
solution which globally exponentially stable.

Issue 3, Volume 12, March 2013



WSEAS TRANSACTIONS on MATHEMATICS

Corollary 9 Under the hypothesed?), and all of the
conditions in Lemma 2 are satisfied, if

n n
—a;; + Z C_lji‘i'zgji < O,i = 1,2,"',71,
J=1,j#i j=1
2w (1—¢q)F _ LA no_
- (f){a“ —+ Z Qij +Zbij} < 1,
@ a j=lg#i =1
i =1,2,---,n, then systenjA2) has a unique pos-
itive w— periodic solution which globally exponen-
tially stable.

4 Examples

In the section, we give two examples for showing our
results.

Example 10 Consider the following a generalized
Gilpin-Ayala competitive system with time delay=

2)
0 =m0 ) - an @y ()
—a1(t)z2(t) — Zl b1 ()z;(t — 715)],
‘7:
“H = (0l — az(®)s (0
—az1(t)z1(t) — Zl baj(t)z;(t — 725)],
j:
(21)
fori=1,2,5 =1,2, where
GZ- = 2, ri(t) = (sin 8t + 2)/9,
a;;(t) = cos 8t + 4,
1 . .
ai;(t) = %(COS 8t +2)(i # J),
1
bij(t) = %(sin&i + 1),1,] = 1,2
We select
w=mw/4, r; =1/9, 7 =1/3,
7= 1@1;12{77@} =1/3, gg=¢€T5,
q= 112232(2{%} =eTs,
=3, @i=5, ay =500 £ ))
Qu_yall_valj_32z j?
7 — {@;} =5, by = 1
a = 112?4;(2 Q55 = 9, Ujj 48’
di = (L)Y2 =134, j =1,2.
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03

0251

x, (©)
. % .

02

015

01 | | | | | | | | |
0

Fig.1. Transient response of state variables >i(t) of Example 4.1

x,(0)

Fig.2. Transient response of state variables é(t) of Example 4.1

For numerical simulation, let;; = 0.15, 712 =
0.26, 701 = 0.3, 7992 = 0.1, the following four cases
are given:

case 1: with the initial statgp;(0),¢2(0)] =
[0.3,0.2];
case 2 with the initial statép;(0),p2(0)] =
[0.2,0.3];

case 3 with the initial statdy;(0),p2(0)] =
[0.1,0.16];

case 4 with the initial statép;(0),¢2(0)] =
[0.15,0.1].

Figs. 1-2 depict the time responses of state vari-
ables ofz(t) andxs(t) of system in example 10, re-
spectively.

On the other hand, by calculation, we have the
following results

2 . 25
Ai — - _Z — i = s
r; Z a Jd] Z b]dJ 288 0
J=Llj#i J=1
A; 1 10
i = ()2 = —— i(0) <d; =1/3,
ei = (=51 <#il0) /3
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2 2
1 _ _ 7—12V10
ai(=)2+ > aj+y bji= o5 <
R B R =
w (1—qg)F.1..  (1—¢q)F.1
1_qi(( aQ) )2{3%(( q) )5
1.217
+2 Z aw—l—22bm}<—<1z—12
J=1j#i

It follows from Theorem 4 and Theorem 5 that
this system has one unigu¢4- periodic solution, and
all other solutions of system exponentially converge to
itast — +oo.

Example 11 For system (21), let

T (t) =

a;;(t) = cost + 2,

0; =1/2, (sint + 2)/18,

1 . .
aij(t) = E(COSt +2)(i # j),
1, . .
bij(t) = é(smt—i- 2), 4,7 =1,2.
We select
w=2r, r;,=1/18, 7 =1/6,
_ _2r
7“-1;1;1{7“,}—1/6 g =e 9,

27

1= 1@?2(2{%} =€

1. .
a; =1, a; =3, a;;= 5(2753)7

_ 1
a= lrglax {a;} =3, bZJ
T4 2 .o
di =(—)*=1/36,i,j =1,2.
a

For numerical simulation, let;; = 0.04, 715 =
0.03, 791 = 0.02, 799 = 0.01, the following four cases
are given:

case 1 with the initial statép;(0),¢2(0)] =
[[0.002; 0.0045];

case 2 with the initial statép;(0),¢2(0)] =
[0.004; 0.0025];

case 3 with the initial statdy;(0),p2(0)] =
[0.001;0.0014];

case 4 with the initial statdy;(0),¢2(0)] =
[0.003; 0.003].
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X107
5

x,®
w

1 I I
0 50 100 150
t

Fig.3. Transient response of state variables x(( )i f Example 4.2
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Fig.4. Transient response of state variables >§(I) of Example 4.2

On the other hand, by calculation, we have the
following results

2 2
Ai:fi_ Z CLZ] Z > 0,

=1,
=(—)"=—5 <;i(0)<d; =1/36
€ ((_Iiz') 2162 = ¢i(0) < 1/
n n _
2 a“ Yy A+ Z:bﬂ: —~106.5 < 0
J=1,j#i J=1
w 3 1 T 1—
— i j=1,j#i
1= q)F g~
(( CURE wa}<—<1z—12

162

It follows from Theorem 4 and Theorem 6 that

Figs. 3-4 depict the time responses of state variables this system has one unig@e- periodic solution, and

of z1(t) andzy(t) of system in example 11, respec-
tively.
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all other solutions of system exponentially converge
to it ast — +oo.
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