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Abstract: In this paper, we investigate a generalized Gilpin-Ayala competition system which is more general and
more realistic than the classical Lotka-Volterra competition system. By the fixed-point theorem and differential
mean value, some sufficient conditions guaranteeing the existence, uniqueness and exponential stability of positive
periodic solutions for a generalized Gilpin-Ayala competition system with time delays are given. Two illustrative
examples are also given in the end to show the effectiveness of our results.
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1 Introduction
The role of spatial heterogeneity and dispersal in the
dynamics of populations has been an important re-
search subject. There are many works about it in the
literature[1-3]. While many models are mainly based
on Lotka-Volterra systems. Since that time, many dif-
ferent forms of the Lotka-Volterra competition model
have been studied (see, for example, [4], [5]). How-
ever, the Lotka-Volterra competition model is linear
(i.e. the rate of change in the size of each species is a
linear function of sizes of the interacting species) and
this property is considered as a disadvantage of this
model. In 1973, Gilpin and Ayala [6] claimed that a
little more complicated model was needed in order to
obtain more realistic solutions, so they proposed a few
competition models, for example,

dNi(t)
dt = riNi(t)[1 − (Ni

ki
)θi − aij

Nj

ki
],

i, j = 1, 2, · · · , d. whereθi are the parameters which
modify the classical Lotka-Volterra model and they
represent a nonlinear measure of interspecific interfer-
ence(i = 1, 2, . . . , d). It was noticed that the Gilpin-
Ayala model has even some properties which do not
exist in the Lotka-Volterra model [7].

In recent years, many researchers have studied the
global stability and other dynamical behaviors of the
Gilpin-Ayala competition model, see [5,6,8,9].

At the same time, many different forms of the
Lotka-Volterra competition model have been studied.

For example, [10] considered the n-species Lotka-
Volterra systems

dxi(t)
dt = xi(t)[ri −

n
∑

j=1
aijxj(t)]. (A1)

[11] investigate the Positive almost periodic solutions
of Lotka-Volterra recurrent neural networks by the
following delayed differential equations:

dxi(t)
dt = xi(t)[ri(t)−

n
∑

j=1
aij(t)xj(t)

−
n
∑

j=1
bijxj(t− τij(t))].

(A2)

Moreover, several important results for periodic so-
lutions of Gilpin-Ayala competition model have been
obtained in Refs. [7,12-15]. For example, The authors
in [12,14] have investigated existence and attractivity
of periodic solution for Gilpin-Ayala competition sys-
tem.

However, to our knowledge, few papers have been
published on the exponential stability of positive peri-
odic solutions for a generalized Gilpin-Ayala competi-
tive system. In this paper, we will investigate the glob-
ally exponential stability of positive periodic solutions
for the following generalized Gilpin-Ayala competi-
tive system with time delays

WSEAS TRANSACTIONS on MATHEMATICS Chunfang Miao, Yunquan Ke

E-ISSN: 2224-2880 277 Issue 3, Volume 12, March 2013



dxi(t)
dt = xi(t)[ri(t)− aii(t)x

θi
i (t)

−
n
∑

j=1,j 6=i
aij(t)xj(t)−

n
∑

j=1
bij(t)xj(t− τij)],

(1)
for i = 1, 2, · · · , n, wherexi(t), ri and aii are the
population size at a timet, the intrinsic exponential
growth rate and the carrying capacity in the absence
of competition, respectively, for thei − th species;
θi > 0 are the parameters that modify the classical
Lotka-Volterra model;aij(i 6= j = 1, 2 · · · , n) and
bij(i, j = 1, 2 · · · , n) represent the effect of interspe-
cific interaction, respectively;τij is time delay of at
the timet.

The initial conditions of system (1) are given by

xi(s) = φi(s), s ∈ [−τ, 0], (2)

where i = 1, 2, . . . .n, τ = max
1≤i≤n,1≤j≤m

{τij},
φi(s) > 0 are bounded and continuous on[−τ, 0].

2 Preliminaries
In order to establish the existence, uniqueness and
exponential stability of positive periodic solution for
system (1), we give assumptions.

◦ (H) : For eachi, j = 1, 2, . . . , n, ri(t), aij(t),
bij(t) are ω− periodic continuously functions
and satisfy

0 < ri ≤ ri(t) ≤ r̄i,

0 < aij ≤ aij(t) ≤ āij,

0 ≤ bij ≤ bij(t) ≤ b̄ij .

Definition 1 Let x∗(t) = (x∗1(t), x
∗
2(t), · · · x∗n(t)))T

be anω− periodic solution of system (1) with initial
value

ψ = (ψ1(t), ψ2(t), · · · , ψn(t))T .
If there exist constantsα > 0 andM > 0, for every
solutionx(t) = (x1(t), x2(t), · · · , xn(t))T of system
(1) with initial value

ϕ = (ϕ1(t), ϕ2(t), · · · , ϕn(t))T ,
such that

n
∑

i=1

|xi(t)− x∗i (t)| ≤Me−αt‖ψ − ϕ‖, t > 0,

thenω− periodic solutionx∗(t) is said to be exponen-
tially stable, where

‖ψ − ϕ‖ = sup
−τ≤t≤0

n
∑

i=1

|ψi(t)− ϕi(t)|.

Let
dθii =

r̄i
aii
,

Ai = ri −
n
∑

j=1,j 6=i

āijdj −
n
∑

j=1

b̄ijdj ,

eθii =
Ai
āii
,

d = max
1≤i≤n

{di}, i = 1, 2, · · · , n.

r̄ = min
1≤i≤n

{r̄i}, ā = max
1≤i≤n

{āii},

qi = e−
∫ ω

0
ri(u)du, q = max

1≤i≤n
{qi},

Ri(t, s) =
e−

∫ s

t
ri(u)du

1− e−
∫ ω

0
ri(u)du

, s ∈ [t, t+ ω].

Lemma 2 Under hypotheses(H), if for any given
initial valueϕi(0) > 0, then there is a unique positive
solutionx(t) of system (1) with satisfy initial value ,
for t ≥ 0.

Proof. From (1), we can obtain

xi(t) = xi(0) exp{
∫ t
0 [ri(s)− aii(s)x

θi
i (s)

−
n
∑

j=1,j 6=i
aij(t)xj(s)−

n
∑

j=1
bij(s)xj(s− τij)]ds},

wherei = 1, 2, · · · , n.
With the initial valueϕi(0) > 0, we know

xi(t) = ϕi(0) exp{
∫ t
0 [ri(s)− aii(s)x

θi
i (s)

−
n
∑

j=1,j 6=i
aij(t)xj(s)−

n
∑

j=1
bij(s)xj(s− τij)]ds},

wherei = 1, 2, · · · , n. Obviously, this solution is a
unique positive solution of system (1).

Lemma 3 Under hypotheses(H), if Ai > 0, 0 <
ei ≤ ϕi(0) ≤ di, i = 1, 2, · · · , n, let x(t) be an posi-
tive solution of system (1) with satisfy initial value (2),
thenx(t) is bounded, and

ei ≤ xi(t) ≤ di, i = 1, 2, · · · , n.

Proof. From (1), if x(t) is an positive solution, we
have

dxi(t)

dt
≤ xi(t)[ri(t)− aii(t)x

θi
i (t)],

or

x
−(θi+1)
i (t)

dxi(t)

dt
− ri(t)x

−θi
i (t) + aii(t) ≤ 0. (3)
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Let zi(t) = x−θii (t). We have

dzi(t)

dt
+ θiri(t)zi(t)− θiaii(t) ≥ 0,

or
dzi(t)

dt
+ θir̄izi(t) ≥ θiaii. (4)

From (4), we have

d

dt
(eθi r̄itzi(t)) ≥ eθir̄itθiaii,

thus we can obtain

zi(t) ≥ [zi(0)−
aii
r̄i

]e−θi r̄it +
aii
r̄i
. (5)

If ϕi(0) ≤ di, from (5) we have

xθii (t) ≤
1

[ϕ−θi
i (0) − aii

r̄i
]e−θir̄it +

aii
r̄i

≤ r̄i
aii
,

i.e.,

xi(t) ≤ (
r̄i
aii

)
1

θi = di, i = 1, 2, · · · , n.

On the other hand, whenxi(t) ≤ di, from (1)

dxi(t)

dt
≥ xi(t)[ri−āiixθii (t)−

n
∑

j=1,j 6=i

āijdj−
n
∑

j=1

b̄ijdj ],

or

x
−(θi+1)
i (t)

dxi(t)

dt
−Aix

−θi
i (t) + āii ≥ 0. (6)

Let zi(t) = x−θii (t). We have

dzi(t)

dt
+ θiAizi(t)− θiāii ≤ 0. (7)

If ei ≤ ϕi(0), from (7) we can obtain

zi(t) ≤ [zi(0) −
āii
Ai

]e−θiAit +
āii
Ai

≤ āii
Ai
. (8)

From (8), we have

xθii (t) ≥
Ai
āii
,

i.e.,
xi(t) ≥ ei, i = 1, 2, · · · , n.

We obtain

ei ≤ xi(t) ≤ di, i = 1, 2, · · · , n.

3 Main results

In this section, we will derive some sufficient condi-
tions which ensure the existence, uniqueness and the
exponential stability of positive periodic solution for
system (1).

Let

X = {x = (x1(t), x2(t), · · · , xn(t))T ∈ C(R,Rn) :

x(t+ ω) = x(t), t ∈ R}

with the norm defined by

|xi| = max
t∈[0,ω]

{|xi(t)|},

‖x‖ = max
1≤i≤n

{|xi|}.

Define the coneP in X by

P = {x = (x1(t), x2(t), · · · , xn(t))T ∈ X :

0 < xi(t) ≤ (
(1 − q)r̄

ā
)

1

θi , t ∈ [0, ω], i = 1, 2, · · · n}.

Theorem 4 Under the hypotheses(H), and all of the
conditions in Lemma 2 are satisfied, if

ω
1−qi

{(θi + 1)āii
(1−q)r̄
ā +

n
∑

j=1,j 6=i
[( (1−q)r̄ā )

1

θi

+( (1−q)r̄ā )
1

θj ]āij +
n
∑

j=1
[( (1−q)r̄ā )

1

θi + ( (1−q)r̄ā )
1

θj ]b̄ij}

< 1,

for i = 1, 2, · · · , n, then system (1) has one positive
ω− periodic solution.

Proof. Let the mapψ be defined by

(ψx)(t) = ((ψx)1, (ψx)2, · · · , (ψx)n)T ,

wherex ∈ P, t ∈ R, fori = 1, 2, · · · , n,

(ψx)i(t) =
∫ t+ω
t Ri(t, s)xi(s)[aii(s)x

θi
i (s)

+
n
∑

j=1,j 6=i
aij(s)xj(s) +

n
∑

j=1
bij(s)xj(s− τij)]ds.

(9)
Since

Ri(t+ ω, s+ ω) = Ri(t, s),

qi
1− qi

≤ Ri(t, s) ≤
1

1− qi
,
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wherei = 1, 2, · · · , n.For anyx ∈ P , it is easy to see
thatψx ∈ C(R,Rn). From (9), we obtain

(ψx)i(t+ ω) =
∫ t+2ω
t+ω Ri(t+ ω, s)xi(s)[aii(s)x

θi
i (s)

+
n
∑

j=1,j 6=i
aij(s)xj(s) +

n
∑

j=1
bij(s)xj(s− τij)]ds

=
∫ t+ω
t Ri(t+ ω, z + ω)xi(z + ω)[aii(z

+ω)xθii (z + ω) +
n
∑

j=1,j 6=i
aij(s)xj(z + ω)

+
n
∑

j=1
bij(z + ω)xj(z + ω − τij)]dz

=
∫ t+ω
t Ri(t, s)xi(s)[aii(s)x

θi
i (s)

+
n
∑

j=1,j 6=i
aij(s)xj(s) +

n
∑

j=1
bij(s)xj(s− τij)]ds

= (ψx)i(t).

and

(ψx)i(t) ≥ qi
1−qi

∫ t+ω
t xi(s)[aii(s)x

θi
i (s)

+
n
∑

j=1,j 6=i
aij(s)xj(s) +

n
∑

j=1
bij(s)xj(s− τij)]ds

= qi
1−qi

∫ ω
0 xi(s)[aii(s)x

θi
i (s) +

n
∑

j=1,j 6=i
aij(s)xj(s))

+
n
∑

j=1
bij(s)xj(s − τij)]ds > 0.

(ψx)i(t) ≤ 1
1−qi

∫ t+ω
t xi(s)[aii(s)x

θi
i (s)

+
n
∑

j=1,j 6=i
aij(s)xj(s) +

n
∑

j=1
bij(s)xj(s− τij)]ds

= 1
1−qi

∫ ω
0 xi(s)[aii(s)x

θi
i (s) +

n
∑

j=1,j 6=i
aij(s)xj(s))

+
n
∑

j=1
bij(s)xj(s − τij))]ds

≤ ω
1−qi

( (1−q)r̄ā )
1

θi [āii
(1−q)r̄
ā

+
n
∑

j=1,j 6=i
( (1−q)r̄ā )

1

θj āij +
n
∑

j=1
( (1−q)r̄ā )

1

θj b̄ij]

≤ ( (1−q)r̄ā )
1

θi .

Hence we obtainψx ∈ P .
Next we will proveψ is contraction mapping. For

anyx, y ∈ P , we have

(ψx)i(t)− (ψy)i(t)

=
∫ t+ω
t Ri(t, s){aii(s)(xθi+1

i (s)− yθi+1
i (s)

+
n
∑

j=1,j 6=i
aij(s)[xi(s)xj(s)− yi(s)yj(s)]

+
n
∑

j=1
bij(s)[xi(s)xj(s− τij)− yi(s)yj(s− τij)]}ds

=
∫ t+ω
t Ri(t, s){(θi + 1)aii(s)(ξ

θi
i (xi(s)− yi(s))

+
n
∑

j=1,j 6=i
aij(s)[xi(s)(xj(s)− yj(s)) + yj(s)(xi(s)

−yi(s))] +
n
∑

j=1
bij(s)[xi(s)(xj(s− τij)− yj(s− τij))

+yj(s− τij)(xi(s)− yi(s))]]}ds,
(10)

whereξi lies betweenxi(t) andyi(t).
From (10), we can obtain

‖(ψx)− (ψy)‖ = max
1≤i≤n

max
t∈[0,ω]

|(ψx)i(t)− (ψy)i(t)|

≤ max
1≤i≤n

max
t∈[0,ω]

1
1−qi

∫ t+ω
t {(θi + 1)aii(s)ξ

θi
i |xi(s)

−yi(s)|+
n
∑

j=1,j 6=i
aij(s)[xi(s)|xj(s)− yj(s)|

+yj(s)|xi(s)− yi(s)|] +
n
∑

j=1
bij(s)[xi(s)|xj(s− τij)

−yj(s− τij)|+ yj(s − τij)|xi(s)− yi(s)|]}ds

≤ max
1≤i≤n

max
t∈[0,ω]

1
1−qi

∫ ω
0 {(θi + 1)āii

(1−q)r̄
ā |xi(s)

−yi(s)|+
n
∑

j=1,j 6=i
āij [(

(1−q)r̄
ā )

1

θi |xj(s)− yj(s)|

+( (1−q)r̄ā )
1

θj |xi(s)− yi(s)|] +
n
∑

j=1
b̄ij[(

(1−q)r̄
ā )

1

θi

·|xj(s − τij)− yj(s − τij)|+ ( (1−q)r̄ā )
1

θj |xi(s)− yi(s)|]}ds

≤ max
1≤i≤n

1
1−qi

∫ ω
0 {(θi + 1)āii

(1−q)r̄
ā

+
n
∑

j=1,j 6=i
[( (1−q)r̄ā )

1

θi + ( (1−q)r̄ā )
1

θj ]āij

+
n
∑

j=1
[( (1−q)r̄ā )

1

θi + ( (1−q)r̄ā )
1

θj ]b̄ij}‖x− y‖ds

≤ max
1≤i≤n

ω
1−qi

{(θi + 1)āii
(1−q)r̄
ā

+
n
∑

j=1,j 6=i
[( (1−q)r̄ā )

1

θi + ( (1−q)r̄ā )
1

θj ]āij

+
n
∑

j=1
[( (1−q)r̄ā )

1

θi + ( (1−q)r̄ā )
1

θj ]b̄ij}‖x− y‖

< ‖x− y‖.

Thus,ψ is contraction mapping, by fixed-point
theorem, it follows that there exist uniqueness an fixed
pointx∗(t) satisfying

ψ(x∗)(t) = x∗(t).

Now we will show thatx∗(t) is the positiveω−
periodic solution of (1). From (9), we obtain

d(ψx)i(t)
dt

= ri(t)(ψx)i(t) +Ri(t, t+ ω)xi(t+ ω)

[aii(t+ ω)xθii (t+ ω) +
n
∑

j=1,j 6=i
aij(t+ ω)xj(t+ ω)
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+
n
∑

j=1
bij(t+ ω)xj(t+ ω − τij)]

−Ri(t, t)xi(t)[aii(t)xθii (t) +
n
∑

j=1,j 6=i
aij(t)xj(t)

+
n
∑

j=1
bij(t)xj(t− τij)]

= ri(t)(ψx)i(t) + ( qi
1−qi

− 1
1−qi

)xi(t)[aii(t)x
θi
i (t)

+
n
∑

j=1,j 6=i
aij(t)xj(t) +

n
∑

j=1
bij(t)xj(t− τij)]

= ri(t)(ψx)i(t)− xi(t)[aii(t)x
θi
i (t) +

n
∑

j=1,j 6=i
aij(t)xj(t)

+
n
∑

j=1
bij(t)xj(t− τij)].

We have

dx∗
i
(t)

dt = ri(t)x
∗
i (t)− x∗i (t)[aii(t)(x

∗
i (t))

θi

+
n
∑

j=1,j 6=i
aij(t)x

∗
j (t) +

n
∑

j=1
bij(t)x

∗
j (t− τij)],

and
x∗i (t+ ω) = x∗i (t).

From the above, we can see that system (1) has one
positiveω− periodic solution.

Theorem 5 Under the hypotheses(H), and all of the
conditions in Theorem 4 are satisfied, ifθi ≥ 1 and

−aii(
Ai
āii

)
θi−1

θi +
n
∑

j=1,j 6=i

āji +
n
∑

j=1

b̄ji < 0,

i = 1, 2, · · · , n.Then system (1) has a unique positive
ω− periodic solution which is globally exponentially
stable.

Proof. By using Theorem 4, system (1) has a
unique positiveω− periodic solution. In the fol-
lowing we will prove the unique positiveω− peri-
odic solution is globally exponentially stable. Let
x̄(t) = (x̄1(t), x̄2(t), · · · , x̄n(t))T be an positiveω−
periodic solution of system (1) with initial value

x̄i(s) = ϕ̄i(s), ei ≤ ϕ̄i(0) ≤ di, −τ ≤ s ≤ 0,

Let x(t) = (x1(t), x2(t), · · · , xn(t))T be an any
solution of system (1) with initial value

xi(s) = ϕi(s), ei ≤ ϕi(0) ≤ di, −τ ≤ s ≤ 0.

From Lemma 3, we have

xi(t) > 0, x̄i(t) > 0, i = 1, 2, · · · , n.

Let

yi(t) = lnxi(t), ȳi(t) = ln x̄i(t), i = 1, 2, . . . , n.

From (1), we can obtain

dyi(t)
dt = ri(t)− aii(t)e

θiyi(t)

−
n
∑

j=1,j 6=i
aij(t)e

yj(t) −
n
∑

j=1
bij(t)e

yj(t−τij ).
(11)

dȳi(t)
dt = ri(t)− aii(t)e

θiȳi(t)

−
n
∑

j=1,j 6=i
aij(t)e

ȳj(t) −
n
∑

j=1
bij(t)e

ȳj(t−τij ).
(12)

From (11) and (12), we have

d(yi(t)−ȳi(t))
dt

= −aii(t)(eθiyi(t) − eθiȳi(t))−
n
∑

j=1,j 6=i
aij(t)(e

yj(t)

−eȳj(t))−
n
∑

j=1
bij(t)(e

yj (t−τij ) − eȳj(t−τij )).

(13)
If θi ≥ 1, we can obtain

sgn(yi(t)− ȳi(t))(e
θiyi(t) − eθiȳi(t))

≥ e(θi−1)ȳi(t)|eyi(t) − eȳi(t)|.
(14)

for i = 1, 2, · · · , n, t > 0.
We consider the Lyapunov functional:

V (t) =
n
∑

i=1
[eεt|yi(t)− ȳi(t)|

+
n
∑

j=1
b̄ij

∫ t
t−τij

eε(s+τij)|eyj(s) − eȳj(s)|ds]
(15)

whereε > 0 is a small number.
Calculating the upper right Dini-derivative

D+V (t) of V (t) along the solution of (13), using
(14) we have

D+V (t) =
n
∑

i=1
{εeεt|yi(t)− ȳi(t)|+ eεtsgn(yi(t)

−ȳi(t))d(yi(t)−ȳi(t))dt +
n
∑

j=1
b̄ij[e

ε(t+τij )|eyj(t) − eȳj(t)|

−eεt|eyj(t−τij ) − eȳj(t−τij )|]}

≤ eεt
n
∑

i=1
{ε|yi(t)− ȳi(t)|+ sgn(yi(t)− ȳi(t))

·[−aii(t)(eθiyi(t) − eθiȳi(t))−
n
∑

j=1,j 6=i
aij(t)(e

yj (t)

−eȳj(t))−
n
∑

j=1
bij(t)(e

yj (t−τij ) − eȳj(t−τij ))]
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+
n
∑

j=1
b̄ij [e

ετij |eyj(t) − eȳj(t)| − |eyj(t−τij ) − eȳj(t−τij )|]}

≤ eεt
n
∑

i=1
{ε|yi(t)− ȳi(t)| − aiie

(θi−1)ȳi(t)|eyi(t)

−eȳi(t)|+
n
∑

j=1,j 6=i
āij |eyj(t) − eȳj(t)|+

n
∑

j=1
b̄ij

·|eyj(t−τij ) − eȳj(t−τij )|] +
n
∑

j=1
b̄ij[e

ετij |eyj(t)

−eȳj(t)| − |eyj(t−τij ) − eȳj(t−τij )|]}

≤ eεt
n
∑

i=1
{ε|yi(t)− ȳi(t)| − aiie

(θi−1)ȳi(t)

·|eyi(t) − eȳi(t)|+
n
∑

j=1,j 6=i
āij |eyj(t) − eȳj(t)|

+
n
∑

j=1
b̄ije

ετij |eyj(t) − eȳj(t)|}

≤ eεt
n
∑

i=1
{ εξi − aii(

Ai

āii
)
θi−1

θi +
n
∑

j=1,j 6=i
āji

+eετ
n
∑

j=1
b̄ji}|xi(t)− x̄i(t)|

≤ eεt
n
∑

i=1
{ ε
ei
− aii(

Ai

āii
)
θi−1

θi +
n
∑

j=1,j 6=i
āji

+eετ
n
∑

j=1
b̄ji}|xi(t)− x̄i(t)|

(16)
whereξi lies betweenxi(t) andx̄i(t).

From condition of Theorem 5, we can choose a
smallε > 0 such that

ε

ei
− aii(

Ai
āii

)
θi−1

θi +
n
∑

j=1,j 6=i

āji + eετ
n
∑

j=1

b̄ji ≤ 0,

for i = 1, 2, · · · , n.
From (16), we getD+V (t) ≤ 0, thenV (t) ≤

V (0), for all t ≥ 0.
From (15), we have

V (t) ≥
n
∑

i=1
eεt|yi(t)− ȳi(t)|

= eεt
n
∑

i=1

1
ξi
|xi(t)− x̄i(t)|.

(17)

V (0) =
n
∑

i=1
[|yi(0)− ȳi(0)|

+
n
∑

j=1
b̄ij

∫ 0
−τij

eε(s+τij)|eyj(s) − eȳj(s)|ds]

=
n
∑

i=1
[ 1ξi |ϕi(0) − ϕ̄i(0)|

+
n
∑

j=1
b̄ij

∫ 0
−τij

eε(s+τij)|ϕj(s)− ϕ̄j(s)|ds]

≤ max
1≤i≤n

{ 1
ei
+

n
∑

j=1
b̄ji

∫ 0
−τ e

ε(s+τ)ds}‖ϕ− ϕ̄‖.
(18)

SinceV (0) ≥ V (t), from (17) and (18), we obtain

1
de
εt

n
∑

i=1
|xi(t)− x̄i(t)| ≤ eεt

n
∑

i=1

1
ξi
|xi(t)− x̄i(t)|

≤ max
1≤i≤n

{ 1
ei
+

n
∑

j=1
b̄ji

∫ 0
−τ e

ε(s+τ)ds}‖ϕ − ϕ̄‖.
(19)

By multiplying both sides of (19) withde−εt , we
get

n
∑

i=1

|xi(t)− x̄i(t)| ≤Me−εt‖ϕ− ϕ̄‖, t > 0. (20)

whereM = d max
1≤i≤n

{ 1
ei
+

n
∑

j=1
b̄ji

∫ 0
−τ e

ε(s+τ)ds}.
By Definition 1, system (1) has one positiveω−

periodic solution which globally exponentially stable.

Theorem 6 Under the hypotheses(H), and all of the
conditions in Theorem 4 are satisfied, if0 < θi < 1,
and

−θiaii(
Ai
āii

)
θi−1

θi +
n
∑

j=1,j 6=i

āji +
n
∑

j=1

b̄ji < 0,

for i = 1, 2, · · · , n, then system (1) has one pos-
itive ω− periodic solution which globally exponen-
tially stable.

If 0 < θi < 1, using Taylor expansion, we have

xθii − x̄θii = θix̄
(θi−1)
i (xi − x̄i) + o(‖x− x̄‖2),

whereo(‖x− x̄‖2) is second-order infinitely small of
‖x − x̄‖. Similar to the proof of Theorem 5, we can
obtain result of Theorem 6, proof is omitted.

Remark 7 For system (1), whenθi = 1, bij = 0, we
obtain the Lotka-Volterra system(A1); whenθi = 1,
we obtain the Lotka-Volterra recurrent neural net-
works(A2).

From Theorem 4 and Theorem 5, we may obtain
the following Corollary 8, Corollary 9.

Corollary 8 Under the hypotheses(H), and all of the
conditions in Lemma 2 are satisfied, if

−aii +
n
∑

j=1,j 6=i

āji < 0, i = 1, 2, · · · , n,

2ω

1− qi

(1− q)r̄

ā
{āii+

n
∑

j=1,j 6=i

āij} < 1, i = 1, 2, · · · , n,

then system(A1) has a unique positiveω− periodic
solution which globally exponentially stable.
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Corollary 9 Under the hypotheses(H), and all of the
conditions in Lemma 2 are satisfied, if

−aii +
n
∑

j=1,j 6=i

āji +
n
∑

j=1

b̄ji < 0, i = 1, 2, · · · , n,

2ω

1− qi

(1− q)r̄

ā
{āii +

n
∑

j=1,j 6=i

āij +
n
∑

j=1

b̄ij} < 1,

i = 1, 2, · · · , n, then system(A2) has a unique pos-
itive ω− periodic solution which globally exponen-
tially stable.

4 Examples

In the section, we give two examples for showing our
results.

Example 10 Consider the following a generalized
Gilpin-Ayala competitive system with time delay(n =
2)







































dx1(t)
dt = x1(t)[r1(t)− a11(t)x

θ1
1 (t)

−a12(t)x2(t)−
2
∑

j=1
b1j(t)xj(t− τ1j)],

dx2(t)
dt = x2(t)[r2(t)− a22(t)x

θ2
2 (t)

−a21(t)x1(t)−
2
∑

j=1
b2j(t)xj(t− τ2j)],

(21)
for i = 1, 2, j = 1, 2, where

θi = 2, ri(t) = (sin 8t+ 2)/9,

aii(t) = cos 8t+ 4,

aij(t) =
1

96
(cos 8t+ 2)(i 6= j),

bij(t) =
1

96
(sin 8t+ 1), i, j = 1, 2.

We select

ω = π/4, ri = 1/9, r̄i = 1/3,

r̄ = min
1≤i≤2

{r̄i} = 1/3, qi = e
−π
18 ,

q = max
1≤i≤2

{qi} = e
−π
18 ,

aii = 3, āii = 5, āij =
1

32
(i 6= j),

ā = max
1≤i≤2

{āii} = 5, b̄ij =
1

48
,

di = (
r̄i
aii

)1/2 = 1/3, i, j = 1, 2.
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Fig.1. Transient response of state variables x
1
(t) of Example 4.1
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Fig.2. Transient response of state variables x
2
(t) of Example 4.1

For numerical simulation, letτ11 = 0.15, τ12 =
0.26, τ21 = 0.3, τ22 = 0.1, the following four cases
are given:

case 1: with the initial state[ϕ1(0), ϕ2(0)] =
[0.3, 0.2];

case 2 with the initial state[ϕ1(0), ϕ2(0)] =
[0.2, 0.3];

case 3 with the initial state[ϕ1(0), ϕ2(0)] =
[0.1, 0.16];

case 4 with the initial state[ϕ1(0), ϕ2(0)] =
[0.15, 0.1].

Figs. 1-2 depict the time responses of state vari-
ables ofx1(t) andx2(t) of system in example 10, re-
spectively.

On the other hand, by calculation, we have the
following results

Ai = ri −
2

∑

j=1,j 6=i

āijdj −
2

∑

j=1

b̄ijdj =
25

288
> 0,

ei = (
Ai
āii

)
1

2 =

√
10

24
≤ ϕi(0) ≤ di = 1/3,
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−aii(
Ai
āii

)
1

2 +
2

∑

j=1,j 6=i

āji+
2

∑

j=1

b̄ji =
7− 12

√
10

96
< 0,

ω

1− qi
(
(1− q)r̄

ā
)
1

2 {3āii(
(1− q)r̄

ā
)
1

2

+2
2

∑

j=1,j 6=i

āij + 2
2

∑

j=1

b̄ij} <
1.21π

4
< 1, i = 1, 2.

It follows from Theorem 4 and Theorem 5 that
this system has one uniqueπ/4- periodic solution, and
all other solutions of system exponentially converge to
it ast→ +∞.

Example 11 For system (21), let

θi = 1/2, ri(t) = (sin t+ 2)/18,

aii(t) = cos t+ 2,

aij(t) =
1

6
(cos t+ 2)(i 6= j),

bij(t) =
1

6
(sin t+ 2), i, j = 1, 2.

We select

ω = 2π, ri = 1/18, r̄i = 1/6,

r̄ = min
1≤i≤2

{r̄i} = 1/6, qi = e−
2π
9 ,

q = max
1≤i≤2

{qi} = e−
2π
9 ,

aii = 1, āii = 3, āij =
1

2
(i 6= j),

ā = max
1≤i≤2

{āii} = 3, b̄ij =
1

2
,

di = (
r̄i
aii

)2 = 1/36, i, j = 1, 2.

For numerical simulation, letτ11 = 0.04, τ12 =
0.03, τ21 = 0.02, τ22 = 0.01, the following four cases
are given:

case 1 with the initial state[ϕ1(0), ϕ2(0)] =
[[0.002; 0.0045];

case 2 with the initial state[ϕ1(0), ϕ2(0)] =
[0.004; 0.0025];

case 3 with the initial state[ϕ1(0), ϕ2(0)] =
[0.001; 0.0014];

case 4 with the initial state[ϕ1(0), ϕ2(0)] =
[0.003; 0.003].
Figs. 3-4 depict the time responses of state variables
of x1(t) andx2(t) of system in example 11, respec-
tively.
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Fig.3. Transient response of state variables x
1
(t) of Example 4.2
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Fig.4. Transient response of state variables x
2
(t) of Example 4.2

On the other hand, by calculation, we have the
following results

Ai = ri −
2

∑

j=1,j 6=i

āijdj −
2

∑

j=1

b̄ijdj =
1

72
> 0,

ei = (
Ai
āii

)2 =
1

2162
≤ ϕi(0) ≤ di = 1/36

−aii
2
(
Ai
āii

)−1 +
n
∑

j=1,j 6=i

āji +
n
∑

j=1

b̄ji = −106.5 < 0.

ω

1− qi
{3
2
āii

(1− q)r̄

ā
+ 2(

(1 − q)r̄

ā
)2

2
∑

j=1,j 6=i

āij

+2(
(1− q)r̄

ā
)2

2
∑

j=1

b̄ij} <
31π

162
< 1, i = 1, 2.

It follows from Theorem 4 and Theorem 6 that
this system has one unique2π- periodic solution, and
all other solutions of system exponentially converge
to it ast→ +∞.
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5 Conclusions

Since the periodic solutions for system is very impor-
tant in theories and applications. In this paper, we give
theorems to ensure the existence and the exponential
stability of the positive periodic solution for a general-
ized Gilpin-Ayala competition system. In exceptional
circumstances, some sufficient conditions guarantee-
ing the existence, uniqueness and exponential stabil-
ity of positive periodic solutions for system(A1) and
(A2) are given. Novel existence and stability condi-
tions are stated in simple algebraic forms so that their
verification and applications are straightforward and
convenient. Two examples are given to show the ef-
fectiveness of the results.

Acknowledgements: This work is supported by the
Natural Science Foundation of Zhejiang Province
(No.Y6100096).

References:
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